
 © U-EAT 2016 CC Attribution 1

Documentation
Table of Contents

Events | Pg. 2

Actions | Pg. 6

Triggers | Coming Soon

 © U-EAT 2016 CC Attribution 2

What are Events?
In short, events are an abstract way for GameObjects to
communicate with one another. GameObject 'A' can call a
function on GameObject 'B' without either object necessarily
needing to know about one-another.

How do they work?
In order to recieve an event, a GameObject must first connect
via the EventSystem either using the static 'EventConnect'
function or the extension method 'Connect':

public static void EventConnect(GameObject target, string eventName, Action<EventData
> func);

//Extension Method

public static void Connect(this GameObject target, string eventName, Action<EventData
> func);

target: The object that is expected to recieve the event.

 © U-EAT 2016 CC Attribution 3

eventName: The name of the event that is being listened for.

func: A function that returns nothing but takes in EventData
as its first parameter.

Next, the event must be sent to the listening target using
either the static 'EventSend' function or the 'DispatchEvent'
extension method.

public static void EventSend(GameObject target, string eventName, EventData eventData
= null);

//Extension Method

public static void DispatchEvent(this GameObject target, string eventName, EventData
eventData = null);

eventData: An optional paramater which is used to pass data
through the event. The user should store the data in a class
which inherits from 'EventData'. By default, an empty
EventData class is used.

Example
public class CustomEventData : EventData

{

 public int StoredInt;

 public CustomEventData(int val)

 {

 StoredInt = val;

 }

}

public class EventExample : MonoBehaviour

{

 © U-EAT 2016 CC Attribution 4

 void Start()

 {

 EventSystem.EventConnect(this.gameObject, "HelloEvent", SayHello);

 EventSystem.EventSend(this.gameObject, "HelloEvent", new CustomEventData(5));

 }

 void SayHello(EventData data)

 {

 CustomEventData customData = (CustomEventData)data;

 Debug.Log("Hello World");

 Debug.Log(customData.StoredInt);

 }

}

Output

Hello World

5

The 'Events' Class
The 'Events' class is used to create a visual interface for
strings to be used as events. Adding another public static
readonly string to the class will add another event to the
dropdown menu of events.

public class Events

{

 //All of the public static readonly strings in this class will appear in the Even
ts insepector's dropdown menu.

 //Leave DefaultEvent as the first event defined in this class.

 © U-EAT 2016 CC Attribution 5

 public static readonly String DefaultEvent = "DefaultEvent";

 public static readonly String KeyboardEvent = "KeyboardEvent";

 public static readonly String MouseUp = "MouseUp";

 public static readonly String MouseDown = "MouseDown";

 public static readonly String MouseEnter = "MouseEnter";

 public static readonly String MouseExit = "MouseExit";

...

Creating a public member variable of type 'Events' in a
monobehavior will make it be drawn in the inspector. The
events class can be implicitly converted from (or to) a string.

public Events ListenEvent = Events.DefaultEvent;

Leads to:

Checking 'AsString' allows a custom string to be entered:

 © U-EAT 2016 CC Attribution 6

What are Actions?
Actions make it simple to set up groups or sequences of
object interpolations. For example: Changing a color from red
to blue over a specified duration.

How do they work?
All Actions inherit from the 'ActionBase' class, which allows
them to be paused, resumed, restarted, and updated with a
given Delta Time. The static 'Action' class is used to interface
with the system.

The primary class for object interpolation is the
'ActionProperty' which can be created using the following
static functions in the 'Action' class.

Note: The entire Action System is in the 'ActionSystem'
namespace.

 © U-EAT 2016 CC Attribution 7

//Sequence Version

public static ActionProperty<T> Property<T>(ActionSequence seq, Property<T> startVal,
T endVal, double duration, Curve ease);

//Group Version

public static ActionProperty<T> Property<T>(ActionGroup grp, Property<T> startVal, T
endVal, double duration, Curve ease);

seq: The 'ActionSequence' for the property to be part of.
Sequences are updated in first-in first-out order. Sequences
and groups can even be in a sequence.

grp: The 'ActionGroup' for the property to be part of. Groups
are updated all at the same time. Sequences and groups can
even be in a group.

startVal: A 'Property' wrapper around the getter and setter
functions of the value to be interpolated. Properties are
created as follows:

//The property to interpolate must be public, gettable, and settable.

public float InterpolatedValue { get; set; }

//Inside of a function, the extension method 'GetProperty' can be called. This functi
on takes in a lambda of the variable to be interpolated.

Property<float> floatProp = this.GetProperty(val => val.InterpolatedValue);

endVal: The value that the property is interpolating towards.

duration: The time in seconds of the interpolation.

ease: The type of easing curve that the interpolation should
use. All the eases listed here (A link to Gizma Easeing)are
implemented. A 'Curve' is can be implicitly converted from
either the 'Ease' enum or a Unity 'AnimationCurve'. Creating a
public class variable of a 'Curve' like this:
public Curve EasingCurve = Ease.Linear;

http://gizma.com/easing/

 © U-EAT 2016 CC Attribution 8

Will show up in the inspector like so:

Checking 'Custom' allows a custom AnimationCurve to be
used:

After the sequence or group is filled with the desired actions,
the Action must have its Update function called every frame,
with the desired Delta Time passed in.

Example
using UnityEngine;

using ActionSystem;

public class ActionExample : MonoBehaviour

{

 public Curve EasingCurve = Ease.QuarticIn;

 public float InterpolatedValue { get; set; }

 ActionGroup Grp = new ActionGroup();

 void Start ()

 {

 //Create an ActionSequence inside of the ActionGroup.

 ActionSequence seq = Action.Sequence(Grp);

 //Add an ActionProperty to the sequence which will interpolate from 0 to 5 ov
er 3 seconds.

 © U-EAT 2016 CC Attribution 9

 Action.Property(seq, this.GetProperty(val => val.InterpolatedValue), 5, 3, Ea
singCurve);

 Reset(seq);

 }

 void Reset(ActionSequence seq)

 {

 //Then, interpolate this objects position to the point [5, 3, 2] over 2 secon
ds.

 Action.Property(seq, transform.GetProperty(val => val.position), new Vector3(
5, 3, 2), 2, Ease.QuadInOut);

 //Then, interpolate this objects position to the point [-5, 3, 2] over 2 seco
nds.

 Action.Property(seq, transform.GetProperty(val => val.position), new Vector3(
-5, 3, 2), 2, Ease.QuadInOut);

 //Then call this function again with another sequence, causing a loop.

 Action.Call(seq, Reset, Action.Sequence(Grp));

 }

 void Update ()

 {

 Grp.Update(Time.smoothDeltaTime);

 }

}

Note: Instead of creating a new ActionGroup in every script
that uses Actions, it is recommended that the extension
method 'GetActions' be called inside of the MonoBehaviour.

ActionGroup grp = this.GetActions();

This function will get and return the ActionGroup inside of the
'ObjectActions' component. If there is no 'ObjectActions'
component on the GameObject, the function will add an
invisible one. Using this component will mean that all actions on
the object will be updated automatically.

 © U-EAT 2016 CC Attribution 10

Output

First, the InterpolatedValue will interpolate to 5 over 3
seconds, then the object will interpolate back and for
indefinitely.

Types of Actions
ActionProperty: Interpolates an object from one value to
another. In order to be interpolated a type must be able to be
added or subtracted from itself, and be multiplied and divided
by either floats or doubles.

ActionSequence: A sequence of other Actions that happen
one after the other. A looping sequence will repeat once the
final Action has completed.

ActionGroup: A group of other Actions that happen all at the
same time. A looping group will repeat once the longest Action
has completed.

ActionDelay: Simply delays the sequence for the specified
number of seconds.

ActionCall: Will call the given function that takes up to 4
paramaters.

ActionReturnCall: Will call the given function that takes up to
4 paramaters and stores the return type.

 © U-EAT 2016 CC Attribution 11

Types of Eases
All the mathematical eases on the following website have
been implemented: http://gizma.com/easing/

http://gizma.com/easing/

	Documentation
	Table of Contents
	Events | Pg. 2
	Actions | Pg. 6
	Triggers | Coming Soon
	What are Events?
	How do they work?
	Example
	The 'Events' Class
	What are Actions?
	How do they work?
	Example
	Types of Actions
	Types of Eases

